|
发表于 2016-7-11 20:24:21
|
显示全部楼层
分页标题#e#
To deal with the problem of quality and dependability, those in charge of the space program emphasized the need for testing industrial products. Many companies that had to develop tests for the space program also manufactured products for use on earth, such as cars and planes. Since some parts are used both in space systems and in products for ordinary life, the emphasis on quality had spread through American industry. Many products are now more reliable than they might have been if men had not been sent to the moon.
In addition to improving the quality of existing products, the space program has been responsible for the development and improvement of new ones. The most important is the computer. To bring the endangered Apollo 13 home safely in 1970, a new flight plan had to be made taking account of an unbelievably complex combination of elements. The computer accomplished this task in seventy-two minutes, whereas a man or a woman working with pencil and paper would have taken more than a million years! If there had been no space program, it is doubtful that computers would now be so widely used in industry and government. More than 800, 000 people in the United States are now employed in jobs related to computers: it is a field in which some of the highest salaries are paid.
Thousands of other new products and processes are now found in industry as the result of space research. Among them are metal alloys, long-wearing paints, plastics, and new types of glue and other adhesives(粘合剂) , as well as new industrial tools. The National Aeronautics and Space Administration (NASA) has a special program called Technology Utilization to speed the transfer of new ideas from the space program to commerce and industry. The U. S. Department of Commerce makes reports on this information available to organizations abroad.
New products and techniques for medicine have developed from the need to measure astronauts' response to space flights. Many of these products and techniques are useful to patients in hospitals. To take just one example, there is a unit as small as a cigarette package which can be strapped to a patient's arm to report on blood pressure, temperature, breathing, and other important information. Such devices allow a single nurse to observe changes in the condition of as many as sixty-four patients in an intensive-care unit.
Besides contributing to education, industry, and medicine, the space program has benefited communication. As a matter of fact, space satellites have revolutionized world communication. By 1960, the demand for overseas telephone and telegraph message for the United States was growing even faster. Industry could see no way to lay undersea cable. Transoceanic television was considered impractical. Satellites have changed all this. From thousands of kilometres above our earth, a communications satellite receives a signal from one side of the world and relays it directly to the other.
The first experiments with communications satellites were conducted in the early 1960s. Today about half the world's long-distance telephone, telegraph, and television traffic is relayed by satellite. Through international agreements, the cost of transoceanic communication has cut almost in half.
|
|